今天是:

师资队伍

undefined

李连忠

性别:

出生日期:1972.1.18

职称、职务:教授

电话(手机):13093092526

E-mailllz3497@163.com

【学术简介】

博士,教授,硕导。江南大学理学院大学数学部教师。多年来一直从事常微分方程、动力系统、偏微分方程等应用数学的教学和研究工作,已在国际国内学术刊物上发表学术论文30多篇,有10多篇被SCI检索收录。美国数学评论评论员,多家国内外杂志审稿人,主持和参与多项国家自然科学基金项目及省部级科研项目。

【工作及研究经历】:

1999.072014.08,泰山学院数学与统计学院工作;

2014.09—至 今, 江南大学理学院工作;

2008.092011.06,曲阜师范大学数学科学学院,获博士学位;

2012.092014.07,上海师范大学数理学院应用数学专业博士后。

【研究领域】

常微分方程、动力系统、偏微分方程

【主要论著】(著作和论文)

主要论文::

[1]L. Li*, M. Han, Y. liu, Existence and uniqueness of traveling wave front of a nonlinear singularly perturbed system of reaction-diffusion equations with a Heaviside step function[J]. J. Math. Anal. Appl. 410(2014) 202–212.

[2] L. Li*, M. Han, Some new dynamic Opial type inequalities and applications for second order integro-differential dynamic equations on time scales[J]. Appl. Math. Comput. 232 (2014) 542–547.

[3] L. Li*, M. Han, X. Xue and Y. liu,y- Stability of nonlinear Volterra integro-differential systems with time delay[J]. Abstract and Applied Analysis, (2013),1 -5.

[4] L. Li*, Generalized double integral inequalities and their applications in studying the stability of nonlinear integro-differential systems with time delay[J]. Journal of Dynamical and Control Systems, 19(2013):457–469.

[5] L. Li*, F. Meng, P. Ju. Some new integral inequalities and their applications in studying the stability of nonlinear integro-differential equations with time delay[J]. J. Math. Anal. Appl. 377(2011):853-862.

[6] L. Li*, F. Meng, L. He. Some generalized integral inequalities and their applications[J]. J. Math. Anal. Appl. 372(2010):339-349 .

[7] L. Li*, F. Meng, Zh. Zheng. Some New Oscillation Results For Linear Hamiltonian System[J]. Appl. Math. Comput. 208(2009): 219-224.

[8] L. Li*, F. Meng, Zh. Zheng. Oscillation Results Related to Integral Averaging Technique For Linear Hamiltonian Systems[J]. Dynamic Systems and Applications. 18(2009): 725-736.

[9] F. Meng, L. Li*, Y. Bai,y- stability of nonlinear Volterra integro-differential systems[J]. Dynamic Systems and Applications. 20(2011): 563-574.

[10]Y. Tian , Y. Cai , L. Li and T. Li, Some dynamic integral inequalities with mixed nonlinearities on time scales[J]. Journa lof Inequalities and Applications. ( 2015) 2015:12

[11] L. Li*, F. Meng, Zh. Zheng. Oscillation results for higher even order nonlinear partial functional differential equations of neutral type[J]. Journal of Applied Mathematics and Computating. 35 (2011): 431-442 .

[12] Lianzhong Li *a, b , Maoan Han a , Yuanyuan Liu a , Peng Wang a, Some Opial Type Inequalities With Higher Order Delta Derivative on Time Scales[J]. Applied Mechanics and Materialsl. 432 (2013): 185-188 .

[13] L. Li, N. Li, Y. Liu and L. Zhang*, Existence and uniquess of a traveling wave front of a model equation in synaptically coupled neuronal networks[J]. Journal of Applied Analysis and Computation,3(2013): 145-167.

[14] L. Li*, F. Meng, New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments[J]. Advances in Pure Mathematics, 1(2011): 49-53.

[15] L. Li*, F. Meng, Zh. Zheng. Oscillation results related to integral averaging technique for even order neutral differential equations with deviating arguments[J]. Annals of Differential Equations. 26( 2010): 414-421.

[16] Y. Tang and L. Li,Oscillation Criteria for a Class of Certain Half-linear Emden-Fowler Functional Differential Equations of Neutral Type[J], Advances in Engineering Research, 110(2017):176-179.

[17]H. Dai and L. Li*, The (G’/G)-Expansion Method for the Sine-Gordon Equation, Sinh-Gordon Equation and Liouville Equaiton[J], Advances in Engineering Research, 110(2017):186-190.

[18]H. Dai and L. Li*, Solitary Wave Solutions to the Sharma-Tasso-Olver Equation and the Similar Hirota-Satsuma KdV System through the Mo dified Simple Equation Method[J], British Journal of Mathematics & Computer Science. 17(3) (2016): 1-10,

[19] H. Dai, L. Li*, Y. Wang and F. He, Symmetry Reductions, Dynamical Behavior and Exact Explicit Solutions to the Combined sinh-cosh-Gordon Equation[J],Advances in Mathematics (数学进展), 47(6)(2018).

[20]A. Sha and L. Li*, Backlund Transformation, Painleve Test and Exact Solutions for a Generalized Variable Coefficient mKdV Equation[J], Mathematica Applicata(应用数学), 2018, 31(4): 890-897.

主要著作:

[1]《数学模型简明教程》,天津教育出版社

【科研、教学项目】

科研项目:

1.山东省自然科学基金ZR2012AL03非线性积分—微分方程解的定性性质及其稳定性分析与应用, 2012/12-2015/12,4万元,项目主持人;

2.山东省教育厅科技计划项目J06P55微分方程及其模型理论与应用研究,2006/9-2010/9,项目主持人;

3.山东省教育厅科技计划项目J11LA51微(积)分不等式基础上的微分方程定性理论研究2011/9-2015/9,项目主持人.

【科研、教学成果及获奖】

科研获奖:

1.山东省优秀博士学位论文,2012

2.山东高等学校优秀科研成果三等奖,第一位次,2012

3.山东软科学优秀成果三等奖,第一位次,2011.

【荣誉与奖励】

多次荣获校级优秀教师、优秀青年园丁、师德先进个人等荣誉称号.

【在读硕、博士人数】

硕士7

【已毕业硕、博士人数】

硕士2

【以上资料更新日期】

201810

Baidu
map